Variations on character varieties

Joint study group of MPI Leipzig, Leipzig University, and Paderborn University
Organisers: Jacques Audibert, Benjamin Delarue,
Guenda Palmirotta, Tobias Weich

October 17, 2025

In this study group, we first want to get an overview of various different definitions of character varieties, the topologies on them, and the most important subspaces. Then, we contrast the "most flexible" and the "most rigid" cases: discrete and faithful or quasi-Fuchsian representations, where the character varieties are large and rich in structure, vs. examples where it is not clear if the character variety contains more than just a few isolated points. We want to focus on instructive examples, which besides the already mentioned classical quasi-Fuchsian representations could include representations of free groups or Coxeter groups. We also would like to understand compactification techniques and their interpretation as group actions on trees or buildings.

Program

The tentative program is a suggestion and can be freely modified. The speaker can choose the content of their talks based on the topics suggestions, of which there are intentionally too many. We can also spread talks over two sessions if needed - in the program this has already been done for some talks, but we might choose to organize this otherwise. In particular, the indicated dates of the talks can be changed as required.

BLOCK I: BASICS

Talk 1 (Oct 23, Jacques): Representation and character varieties

The first talk should present the representation variety $\operatorname{Hom}(\Gamma, G)$ from a finitely generated group Γ to a Lie group or and algebraic group G. It should discuss a bit the conjugation action of G on $\operatorname{Hom}(\Gamma, G)$ and explain the main models of the character variety. Explicit examples would greatly help. A possible list of topics could be the following.

• $\operatorname{Hom}(\Gamma, G)$ as a topological space [Mar25, Chapter 2.1]

- $\operatorname{Hom}(\Gamma, G)$ as an analytic/algebraic space [JM87], [LM85], [Sik12]
- The action of G on $\operatorname{Hom}(\Gamma, G)$ [Mar25, Chapter 3]
- The Hausdorff character variety [Mar25, Chapter 4]
- The algebraic character variety [LM85], [Sik12]
- Local obstructions to representation and character varieties [KM98], [KM17]
- Examples [Mar25], [Law07], [Gol22, Chapter 7.3], [HP23], [Sik12], [LM85]

Talk 2 (Oct 30, Benjamin): The case of surface groups

In this talk, we will assume that Γ is the fundamental group of a closed orientable surface S of genus at least 2. In this case, the representation varieties and the character varieties are much more well-behaved and admit extra structures. The motivation to study these character varieties is that they sometimes admit connected components that parametrizes geometric structures on S. A possible list of topics could be the following.

- The smooth structure on the character variety [Mar25, Chapter 4.5]
- The Teichmüller space [BIW14]
- The moduli space of convex real projective structures [Gol90], [CG93]
- Symplectic structure of the character variety [Gol84], [Gol86], [Mar25, Chapter 5]
- Counting of connected components of the character variety [Li93], [Col19, Chapter 1.2]
- Algebraic properties [RBKC96]

BLOCK II: IN-DEPTH EXAMPLES

Talk 3 (Nov 13): Quasi-Fuchsian space and its frontier

The goal of this talk is to present Quasi-Fuchsian space, which is an open set of the character variety of the fundamental group of a closed orientable surface S of genus at least 2 into $SL(2,\mathbb{C})$. It coincides with the set of convex-cocompact representations from $\pi_1(S)$ to $SL(2,\mathbb{C})$. Bers uniformization theorem gives a parametrization of Quasi-Fuchsian space by two copies of the Teichmüller space of S. As shown by Sullivan, Quasi-Fuchsian space is the interior of the space of conjugacy classes of discrete and faithful representations from $\pi_1(S)$ to $SL(2,\mathbb{C})$. The frontier of Quasi-Fuchsian space has also been largely investigated. A possible list of topics could be the following.

- Convex-cocompact representations [Can]
- Sullivan theorem [Sul85]
- Frontier of quasi-fuchsian representations [Can10], [Kap09, Chapter 8]

Talk 4 (Nov 20 - 27): Higher Teichmüller spaces

In this talk, we want to explore higher Teichmüller spaces. These are connected components of the character variety of a surface group where all representations are injective and discrete. The main examples are the Hitchin components and maximal components. Higher Teichmüller spaces are strongly connected with what positive representations. One of the main goal of higher Teichmüller theory is to interprete them as moduli space of geometric structures on manifold. Finally, higher Teichmüller theory have ramifications outside of surface groups: for hyperbolic n-manifolds for instance. A possible list of topics could be the following.

- Hitchin representations [BIW14], [Can22]
- Maximal representations [BIW14], [Poz]
- Relation to positive representations [FM22], [GLW25], [BGL⁺24]
- Geometric structures and higher Teichmüller spaces [CG93], [GW12]
- Beyond surface groups [Ben05], [Bar15], [BK25]

Talk 5 (Dec 4): Rigid representations

The goal of this talk is to discuss the problem of rigidity for representations: when can a representation be deformed in representations that are not just conjugate? The main instance of this phenomenon are finite groups are lattices of semisimple Lie groups. For lattices of higher rank Lie groups, even more is true: they are superrigid. On the contrary, surface groups are known to have a very rich theory of deformations. For hyperbolic manifolds of higher dimensions, this lead to questions which are mostly open. A possible list of topics could be the following.

- The case of finite groups
- Local rigidity of lattices [Rag72, Chapters VI and VII]
- Superridity of lattices in higher rank [Mor15, Chapter 16]
- The case of surface groups [KP14]
- Further questions on local rigidity [CLT07], [GM87]

BLOCK III: COMPACTIFICATION

Talk 6 (Dec 11 – Dec 18): Compactification techniques: the classical story

The goal of this talk is to present the compactification of character varieties defined by Morgan-Shalen. Originally defined for $SL(2,\mathbb{C})$, this compactification works whenever G has real rank 1. Restricted to the Teichmüller space, this compactification agrees with Thurston's compactification. When G has real rank 1, points in the boundary of this compactification give rise to actions of Γ on real trees. A possible list of topics could be the following.

- The compactification of Morgan-Shalen [MS84], [Ota15]
- Thurston's compactification of Teichmüller space [Ota15], [Bon88]
- The point of view of equivariant Gromov topology [Bes88], [Pau09]
- Actions on real trees [Ota01], [Kap09, Chapters 10 and 11]
- The point of view of harmonic maps [Wol95]
- The topology of this compactification [Wol11]

Talk 7 (Jan 8): Compactification techniques: further ramifications

In this talk, we explore other compactifications and compare them to Morgan-Shalen compactification. The natural extension of the latter to higher rank Lie groups is the Weyl-chamber length compactification, where boundary points give rise to actions of Γ on buildings. The Real Spectrum Compactification is a compactification coming from real algebraic geometry that does not agree with the aforementioned compactifications. A possible list of topics could be the following.

- The Weyl-chamber length compactification [Par12], [BIPP25]
- The Real Spectrum compactification [Bru88], [BIPP21]

BLOCK IV: FURTHER TOPICS

Here are some possible topics for further investigations:

- Anosov representations and their frontiers
- Applications to spectral analysis
- Berkovich analytification of character varieties

References

- [Bar15] Thierry Barbot, Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differ. Geom. 101 (2015), no. 1, 1–46 (English).
- [Ben05] Yves Benoist, Divisible convex sets. III. (Convexes divisibles. III), Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), no. 5, 793–832 (French).
- [Bes88] Mladen Bestvina, Degenerations of the hyperbolic space, Duke Math. J. **56** (1988), no. 1, 143–161 (English).
- [BGL⁺24] Jonas Beyrer, Olivier Guichard, François Labourie, Beatrice Pozzetti, and Anna Wienhard, *Positivity, cross-ratios and the Collar Lemma*, Preprint, arXiv:2409.06294 [math.DG] (2024), 2024.
- [BIPP21] Marc Burger, Alessandra Iozzi, Anne Parreau, and Maria Beatrice Pozzetti, *The real spectrum compactification of character varieties: characterizations and applications*, C. R., Math., Acad. Sci. Paris **359** (2021), no. 4, 439–463 (English).
- [BIPP25] _____, Weyl chamber length compactification of the psl(2,r)xpsl(2,r) maximal character variety, Glasg. Math. J. 67 (2025), no. 1, 11–33 (English).
- [BIW14] Marc Burger, Alessandra Iozzi, and Anna Wienhard, *Higher Teichmüller spaces: from sl(2,r) to other Lie groups*, Handbook of Teichmüller theory. Volume IV., Zürich: European Mathematical Society (EMS), 2014, pp. 539–618 (English).
- [BK25] Jonas Beyrer and Fanny Kassel, $H^{p,q}$ -convex cocompactness and higher higher Teichmuller spaces, Preprint, arXiv:2305.15031 [math.GT] (2025), 2025.
- [Bon88] Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. **92** (1988), no. 1, 139–162 (English).
- [Bru88] G. W. Brumfiel, The real spectrum compactification of Teichmüller space, Geometry of group representations. Proc. AMS-IMS-SIAM Jt. Summer Res. Conf., Boulder/Colo. 1987, Contemp. Math. 74, 51-75 (1988)., 1988.
- [Can] R. Canary, IHP lectures on hyperbolic 3-manifolds, https://websites.umich.edu/canary/IHPMay2025.pdf.
- [Can10] Richard P. Canary, Introductory bumponomics: the topology of deformation spaces of hyperbolic 3-manifolds, Teichmüller theory and moduli problem. Proceedings of the workshop at Harish-Chandra Research Institute, Allahabad, India, January 5–15, 2006, Mysore: Ramanujan Mathematical Society, 2010, pp. 131–150 (English).

- [Can22] Richard Canary, *Hitchin representations of Fuchsian groups*, EMS Surv. Math. Sci. **9** (2022), no. 2, 355–388 (English).
- [CG93] Suhyoung Choi and William M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Am. Math. Soc. 118 (1993), no. 2, 657–661 (English).
- [CLT07] D. Cooper, D. D. Long, and M. B. Thistlethwaite, Flexing closed hyperbolic manifolds., Geom. Topol. 11 (2007), 2413–2440 (English).
- [Col19] Brian Collier, Studying deformations of Fuchsian representations with Higgs bundles, SIGMA, Symmetry Integrability Geom. Methods Appl. 15 (2019), paper 010, 32 (English).
- [FM22] Xenia Flamm and Arnaud Maret, Proceedings of the Young Researchers Workshop on Positivity in Lie Groups, Preprint, arXiv:2212.04339 [math.DG] (2022), 2022.
- [GLW25] Olivier Guichard, François Labourie, and Anna Wienhard, *Positivity and representations of surface groups*, Preprint, arXiv:2106.14584 [math.DG] (2025), 2025.
- [GM87] W. M. Goldman and J. J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), 495–520 (English).
- [Gol84] William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. **54** (1984), 200–225 (English).
- [Gol86] _____, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. **85** (1986), 263–302 (English).
- [Gol90] _____, Convex real projective structures on compact surfaces, J. Differ. Geom. **31** (1990), no. 3, 791–845 (English).
- [Gol22] _____, Geometric structures on manifolds, Grad. Stud. Math., vol. 227, Providence, RI: American Mathematical Society (AMS), 2022 (English).
- [GW12] Olivier Guichard and Anna Wienhard, Anosov representations: domains of discontinuity and applications, Inventiones mathematicae 190 (2012), no. 2, 357–438.
- [HP23] Michael Heusener and Joan Porti, *The scheme of characters in* SL₂, Trans. Am. Math. Soc. **376** (2023), no. 9, 6283–6313 (English).
- [JM87] Dennis Johnson and John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis, Pap. Hon. G. D. Mostow 60th Birthday, Prog. Math. 67, 48-106 (1987)., 1987.

- [Kap09] Michael Kapovich, Hyperbolic manifolds and discrete groups, reprint of the 2001 hardback edition ed., Mod. Birkhäuser Class., Boston, MA: Birkhäuser, 2009 (English).
- [KM98] Michael Kapovich and John J. Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Publ. Math., Inst. Hautes Étud. Sci. 88 (1998), 5–95 (English).
- [KM17] _____, On representation varieties of 3-manifold groups, Geom. Topol. 21 (2017), no. 4, 1931–1968 (English).
- [KP14] Inkang Kim and Pierre Pansu, *Density of Zariski density for surface groups*, Duke Math. J. **163** (2014), no. 9, 1737–1794 (English).
- [Law07] Sean Lawton, Generators, relations and symmetries in pairs of 3×3 unimodular matrices, J. Algebra **313** (2007), no. 2, 782–801 (English).
- [Li93] Jun Li, The space of surface group representations, Manuscr. Math. **78** (1993), no. 3, 223–243 (English).
- [LM85] Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Am. Math. Soc., vol. 336, Providence, RI: American Mathematical Society (AMS), 1985 (English).
- [Mar25] A. Maret, A note on Character Varieties, Lecture notes, available online, 2025.
- [Mor15] Dave Witte Morris, Introduction to arithmetic groups, [s.l.]: Deductive Press, 2015 (English).
- [MS84] John W. Morgan and Peter B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. Math. (2) 120 (1984), 401–476 (English).
- [Ota01] Jean-Pierre Otal, The hyperbolization theorem for fibered 3-manifolds. Transl. from the French by Leslie D. Kay, SMF/AMS Texts Monogr., vol. 7, Providence, RI: American Mathematical Society (AMS), 2001 (English).
- [Ota15] ______, Compactification of spaces of representations after Culler, Morgan and Shalen, Berkovich spaces and applications. Based on a workshop, Santiago de Chile, Chile, January 2008 and a summer school, Paris, France, June 2010, Cham: Springer, 2015, pp. 367–413 (English).
- [Par12] Anne Parreau, Compactifications of representation spaces of finitely generated groups, Math. Z. 272 (2012), no. 1-2, 51–86 (French).
- [Pau09] Frédéric Paulin, On Thurston's compactification of Teichmüller space, Géométries à courbure négative ou nulle, groupes discrets et rigidités, Paris: Société Mathématique de France (SMF), 2009, pp. 421–443 (French).

- [Poz] B. Pozzetti, *Maximal representations*, https://www.mathi.uni-heidelberg.de/pozzetti/papers/notesSp4.pdf.
- [Rag72] M. S. Raghunathan, *Discrete subgroups of Lie groups*, Ergeb. Math. Grenzgeb., vol. 68, Springer-Verlag, Berlin, 1972 (English).
- [RBKC96] A. S. Rapinchuk, V. V. Benyash-Krivetz, and V. I. Chernousov, Representation varieties of the fundamental groups of compact orientable surfaces, Isr. J. Math. 93 (1996), 29–71 (English).
- [Sik12] Adam S. Sikora, *Character varieties*, Trans. Am. Math. Soc. **364** (2012), no. 10, 5173–5208 (English).
- [Sul85] Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985), 243–260 (English).
- [Wol95] Michael Wolf, Harmonic maps from surfaces to \mathbb{R} -trees, Math. Z. **218** (1995), no. 4, 577–593 (English).
- [Wol11] Maxime Wolff, Connected components of the compactification of representation spaces of surface groups, Geom. Topol. 15 (2011), no. 3, 1225–1295 (English).